Product Datasheet # **MSFET - USB** # **USB interface for the MSFET3330 and MSFET334x** ### **Key Features** - Small packaging (40mm x 70mm) - USB powered (galvanic isolation of in- and outputs) - Digital sensor output - pH calibration function - Graphical user interface (Java) # **Applications** - Laboratory - Water quality monitoring - Environment control - Security and industrial process control #### **Characteristics** - Temperature range: 0°C ... 80°C - USB powered (galvanic isolation) - pH calibration function - Digital output of sensor output (raw data) and measured pH - Data transfer via USART bus (2 wires) # **Technical Specifications** | | Min. | Typical | Max. | Unit | |--------------------|------|---------|------|------| | Power supply (USB) | 3.25 | 3.3 | 3.35 | V | | Input current | | 30 | | mA | | | | | | | | ISFET Vds | | 0.5 | | V | | ISFET Id | | 0.1 | | mA | | | | | | | | Baudrate | | 1200 | | | # **Measurement Specifications** | | Min. | Typical | Max. | Unit | |-----------------------|------|---------|------|------| | pH range | 1 | | 12 | | | Resolution: | | | | | | Sensor output voltage | | 1 | | mV | | рН | | 0.02 | | UpH | | | | | | | | Measurement frequency | | 1 | | Hz | ### **Communication** # **System commands** | Command | Description | |--------------------------------|---| | cal_0 | Start calibration | | cal_ <ph></ph> | Record sensor output for a given pH. The pH value of the current buffer is entered in UpH*100. Example: cal_750 = record the sensor output for the current buffer of pH7.5 | | param | Print recorded ISFET parameters (Voffset [mV] and slope [mV * 100]) | | off_ <v<sub>offset></v<sub> | Enter V _{offset} (e.g. from a previous calibration) into system memory | | slp_ <slope></slope> | Enter slope (in mV*100) into system memory | | dft_ <drift></drift> | Enter drift of sensor output voltage into system memory (in mV/day * 100) | | done | Ends the calibration function. Use this command to perform a 1 or 2 point calibration. | Commands need to end with "\n". Calibration must always start with the most central value of the range of interest. #### System output structure | Identifier | | Content (in ASCII code) | | | | | | |------------|---|----------------------------|---|------------------------------|----|---------------|----| | d | ; | Sensor output voltage [mV] | ; | Status info (can be ignored) | , | Calculated pH | \n | | i | ; | System information | | | \n | | | # **Graphical User Interface** The data sent by the MSFET3330 Interface can be read via the pH Measurement interface provided with the system. The graphical interface is started by double clicking the "MSFET_Interface.jar" file in the "MSFET Interface" folder. The program will open a file selection dialog, where the user can chose the *.txt file, where the measurement data will be stored. If an existing *.txt is selected, the data will simply be added to the document. Once the measurement file is selected the graphical user interface will open, as shown in the above picture. In order to connect to the MSFET3330 Interface, the user needs to select the corresponding COM port (1). The baudrate should be set to 1200 for a correct communication between the PC and the MSFET3330 Interface (2). Clicking on "Start Measurement" (3) will start the measurement and the received data will be displayed. For calibrating the system, commands (4) can be send to the MSFET3330 Interface via the "Send command" button (5). The corresponding system information will be printed in the system information window. Measurements can be halted and restarted via the "End Measurement"/"Start Measurement" button. At the end of the measurement simply close the window by clicking the "Exit" button (6). The ISFET type selection (7) allows toggling the output between pH and mM for ion selective measurements. # Example for pH calibration (using buffer pH7, pH4 and pH10): - 1) Connect ISFET and reference electrode and plunge into pH buffer. Use the buffer which represents the central value of your range of interest (e.g. pH7). - 2) Send "cal_0\n" to start calibration function. - 3) Wait for the sensor output Vsg to stabilize. - 4) Send "cal_700\n" to record the sensor output at the current buffer (pH7) - 5) Change buffers the next buffer is pH4 and wait for Vsg to stabilize. - 6) Send "cal_400\n" to record the sensor output of the current buffer (pH4) - 7) Change buffers the next buffer is pH10 and wait for Vsg to stabilize. - 8) Send "cal_1000\n" to record the sensor output of the current buffer (pH10) - 9) The system will determine the calibration parameters and send them as system information as well as writing them to the system memory. - 10) The sensor is now calibrated and ready for measurement. # Using the interface with the MSFET334x sensor line The digital interface also works with the functionalized MSFET334x sensors. However, since the conversion is tailored to the pH nomenclature, the input for the calibration commands needs to be adapted accordingly. The functionalized MSFET334x sensors generally have a linear response in the range of 10^{-5} M to 0.5M. In the pH nomenclature this corresponds to a range of 5 to 0.3, since we are using the log_{10} conversion (e.g. $log(10^{-5} [M]) = -5$). The following table gives a guideline for the commands for the calibration of MSFET334x sensors. The general conversion is as a simple logarithm: "pH" = - log₁₀(concentration[M]). | Ion concentration [mM] | Log ₁₀ (concentration[M]) | Calibration command | | | |------------------------|--------------------------------------|---------------------|--|--| | 0.1 | -4 | cal_400 | | | | 2 | -2.7 | cal_270 | | | | 5 | -2.3 | cal_230 | | | | 30 | -1.52 | cal_152 | | | | 500 | -0.3 | cal_030 | | | The sensor output will be converted into the pH nomenclature, which can be converted into the ion concentration via: concentration $$[M] = \frac{1}{10^{"pH"}}$$